Community Microgrids in New York

Securing Our Energy Future By Investing In Communities

Thomas Bourgeois, Pace Energy and Climate Center

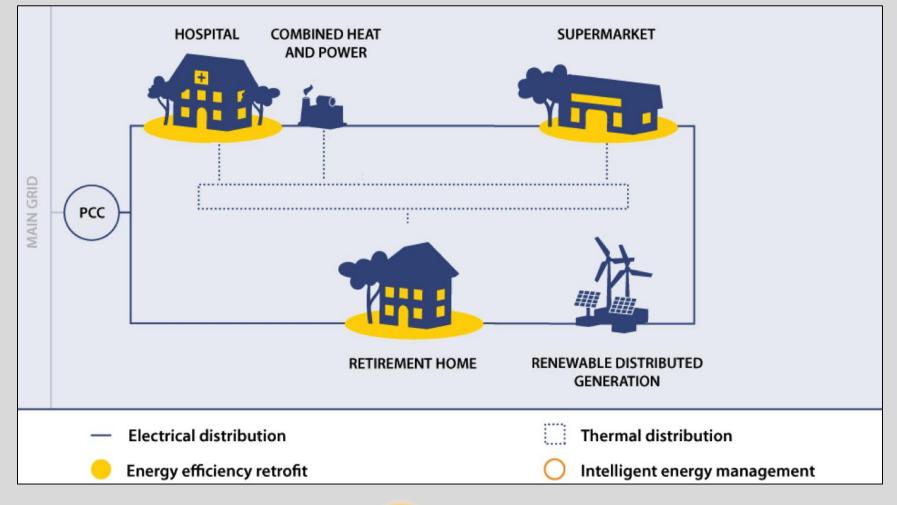
This presentation will cover:

- What are microgrids, and how do they contribute to energy resiliency?
- What technologies can be used in an microgrid, and how can they provide environmentally superior, cost-effective power?
- What is the roadmap to developing a community microgrid? What types of studies, financing decisions, and regulatory hurdles will project champions need to address?
- What tools and resources are available to communities to assist in the microgrid development process?

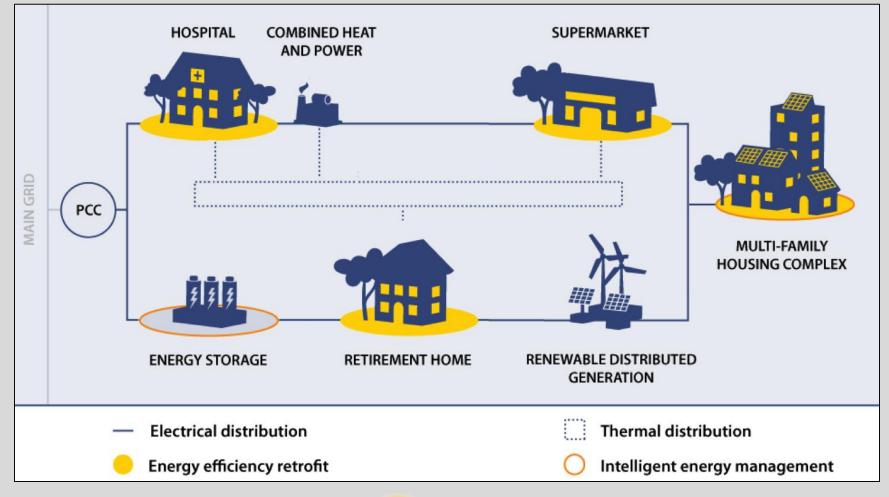
Our Center's CHP/Microgrid Activities in the Northeast.

- Dept. of Energy's Northeast Combined Heat and Power (CHP) Technical Assistance Partnership
 - Promoting CHP through outreach, analysis and free feasibility screenings.
- John Merck Fund grant to promote microgrid development in New England.
 - Hands-on technical assistance to five partner communities in MA and CT.
- Participation in utility rate cases and Public Service Commission proceedings
 - Microgrid working group in NY's Renewing the Energy Vision proceeding.
- Mertz Gilmore Foundation grant to promote microgrid development for community based organizations in NYC.

Microgrids can combine a variety of different technologies to serve different types of energy users.

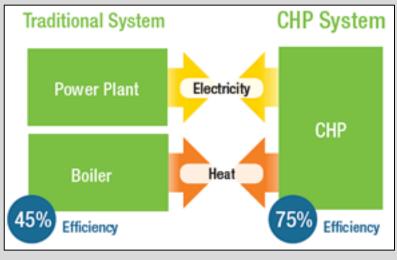


Combined heat and power is often a centerpiece of reliable, clean, and economic microgrids.



Microgrids can also incorporate renewable distribute generation.

Microgrids can utilize energy storage to create hybrid systems for clean & reliable power.


A Menu of Microgrid Technologies

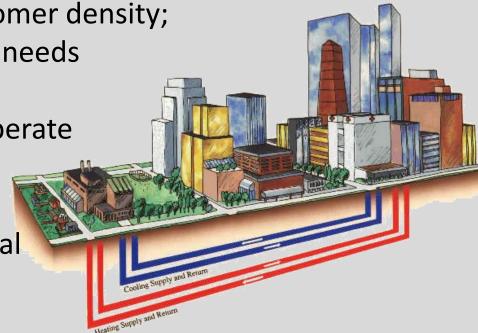
- Whole-Building Energy Efficiency Retrofits: employed before sizing generation to "right size" generation.
- Renewables, including solar photovoltaic, solar thermal, wind, hydro, geothermal, and biomass.
- CHP, District heating and cooling systems
- Energy storage technologies, such as batteries, flywheels, and physical materials like hot water ice or hydrogen.
- Intelligent energy management devices and IT systems communicate to balance load and generation
- Smart-grid technologies manage the interface and flows between the macrogrid and the microgrid

Combined heat and power is often a centerpiece of reliable, clean, and economic microgrids.

- Continuously operates 24/7
- Efficiently provides electrical and thermal energy
- Reduces GHG emissions
- Provides resilient power through storms, blackouts, and other emergencies
- High power prices can make microgrid projects more economical

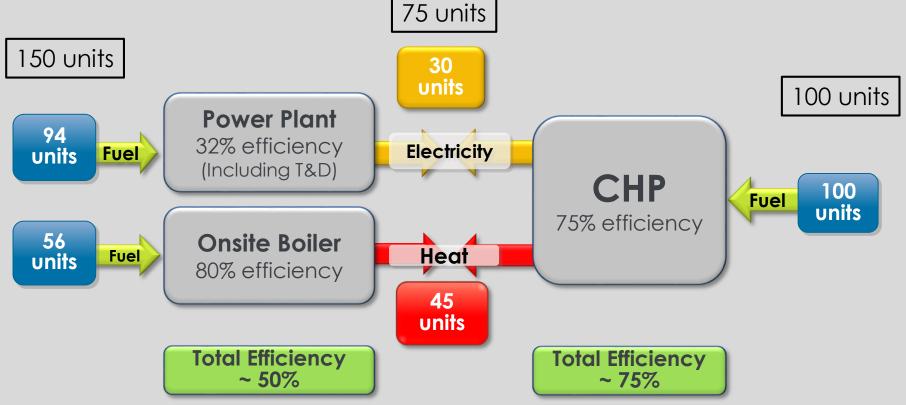
What Is Combined Heat and Power?

CHP is an integrated energy system that:


- Is located at or near a factory or building
- Generates electrical and/or mechanical power
- Recovers waste heat for
 - heating,
 - cooling or
 - dehumidification
- Can utilize a variety of technologies and fuels

What is District Energy/CHP/Microgrid?

- Local "distributed" generation integrating CHP; thermal energy; electricity generation; storage and renewables
- Located near load centers; customer density; often serve some mission-critical needs
- Robust, economic assets that operate 24/7/365; not just emergencies
- CHP interconnected with regional & local grid



Able to "island" in the event of grid failure

CHP Recaptures Much of that Heat, Increasing Overall Efficiency of Energy Services.....

CHP versus Backup Generation

	СНР	Backup Generation
System Performance	 Designed and maintained to run continuously Improved performance reliability 	 Only used during emergencies
Fuel Supply	 Natural gas infrastructure typically not impacted by severe weather 	 Limited by on-site storage
Transition from Grid Power	• May be configured for "flicker- free" transfer from grid connection to "island mode"	• Lag time may impact critical system performance
Energy Supply	 Electricity Thermal (heating, cooling, hot/chilled water) 	• Electricity
Emissions	 Typically natural gas fueled Achieve greater system efficiencies (80%) Lower emissions 	• Commonly burn diesel fuel

Microgrid Benefits: Energy Resiliency

- Moody's Analytics estimated that nearly \$20 billion in losses occurred due to suspended business activities after Hurricane Sandy.
- PlaNYC Resiliency report cites \$19 billion in total losses from Sandy for NYC alone.
- NY 2100 Commission Report January 2013 calls for accelerated pace of DG/Microgrids deployment as component of future resiliency planning.
- Microgrids are a component of Governor Cuomo's Storm Preparedness Plan, which pledges \$40 million for several microgrids through the NY Prize initiative.
- On-site generation can serve the needs of communities when the macrogrid is down.

Resilient University Microgrids

- The College of New Jersey (NJ) 5.2 MW CHP
 - "Combined heat and power allowed our central plant to operate in island mode without compromising our power supply." - Lori Winyard, Director, Energy and Central Facilities at TCNJ
- Fairfield, University (CT) 4.6 MW CHP
 - 98% of the Town of Fairfield lost power, university only lost power for a brief period at the storm's peak
 - University buildings served as area of refuge for off-campus students
- Stony Brook University (LI, NY) 45 MW CHP
 - < 1 hour power interruption to campus of 24,000 students (7,000 residents)
- NYU Washington Square Campus (NY, NY) 13.4 MW CHP
- Princeton University (NJ) 15 MW CHP
 - CHP/district energy plant supplies all heat and hot water and half of the electricity to campus of 12,000 students/faculty
 - "We designed it so the electrical system for the campus could become its own island in an emergency. It cost more to do that. But I'm sure glad we did." – Ted Borer, Energy Manager at Princeton University

NYC Co-Op City Bronx, New York

- "City within a city" 60,000 residents, 330 acres, 14,000+ apartments, 35 high rise buildings
- One of the largest housing cooperatives in the world; 10th largest city in New York State
- 40 MW cogeneration plant maintained power before, during and after the storm (heat & power)

http://www.forbes.com/sites/williampentland/2012/10/31/where-the-lights-stayed-on-during-hurricane-sandy/

Resilient Infrastructure: South Oaks Hospital (Amityville, NY)

- Hospital & Nursing Home campus with natural gas-powered CHP system
 - System consists of five 250 kW IntelliGen engines
- When the macrogrid went down during Sandy, South Oaks transitioned to "island mode" with no interruption of power.
- The CHP System provided 100% of the facility's electricity, thermal and hot water demands for 15 days.
- In addition to meeting the hospital's needs, South Oaks admitted evacuated patients from nearby healthcare facilities, refrigerated medications, and housed hospital staff who had lost power.

Microgrid Benefits: May Lower Energy Costs

- Burrstone microgrid's college, nursing home and hospital each report savings between \$300,000 and \$500,000 annually, or 15-20%, creating a 10 year payback period.
- Cornell University's microgrid reports 8-10% return on investment through energy savings.
- The FDA's White Oak microgrid project cost \$71 million but is expected to save \$11 million a year in electricity.
- South Oaks Hospital CHP system saves nearly \$540,000 annually (on \$1.467 Mil energy bill).
- NY Presbyterian reports that by purchasing 10% more fuel (natural gas) they avoid purchasing 80% of their electricity requirements.
- **NOTE**: From site to site, microgrids may impose more costs than they save. Many projects rely on improved power reliability to justify this investment.

Well designed CHP is highly efficient

- UMass Medical Center's new 16.5 MW system operates at 86% total system efficiency
- NY Presbyterian 7.5 MW system reports operating at 85% efficiency
- At full load, South Oaks hospital's CHP system operates at 88% efficiency (32% electrical, 56% thermal/mechanical)

Microgrid Benefits: Reduced Emissions & CO₂

- Cornell microgrid 5 0,000 tons per year CO₂ reductions, or 40%
- Burrstone microgrid 4,000 tons per year CO₂ reduction
- NYU microgrid 44,000 tons per year CO₂ reduction
- UMass Medical Center achieved a 19% decrease in net annual GHG emissions
- NY Presbyterian 27,000 tons per year CO₂ reduction
- South Oaks Hospital reduced carbon footprint by >1,900 tons per year and NO_x reduced 95% in 2012 (removed hospital from Major Source site!)

Community Energy Roadmap

Step 1: Set project goals.

Step 2: Organize and educate core stakeholders.

Step 3: Identify project site.

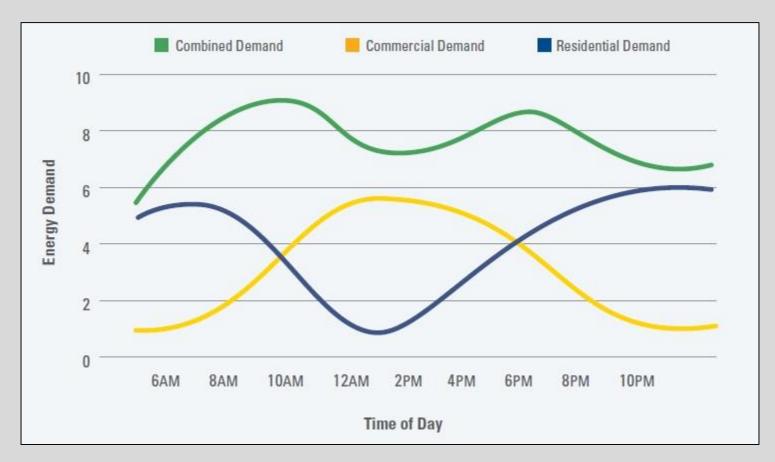
Step 4: Conduct first level screening.

Step 5: Conduct second level screening.

Step 6: Conduct audit grade study.

Step 7: Acquire financing.

Step 8: Acquire necessary approvals.


The Community Microgrids Roadmap: Set Project Goals and Identify Project Site

- An **energy planning process** may help ensure that communities plan for where their energy needs will be in the future.
- Finding an **anchor energy user** (e.g., hospitals, universities, convention centers, industrial parks, commercial office centers, and prisons) can help provide access to capital, as well as ensure future load.
- Identify sites with substantial wasted energy: e.g., Bridgeport CT is the home to an existing waste-to-energy facility that has no present use for its waste heat. NuPower Thermal LLC plans to distribute 3 million cubic feet of heating through 1.5 miles of piping from the facility, bringing low cost heating to a large part of downtown Bridgeport.

Finding the Right Site:

Complementary Users Combine to Form a Single High and Steady Demand, Meaning Microgrid Generators are Less Likely to Sit Idle or Run Inefficiently

The Community Microgrids Roadmap: Feasibility and Audit Grade Studies

Multiple levels of screening:

- First level screening: e.g., a free feasibility analysis for CHP systems provided by US DOE based on utility bills.
- Second level screening: a more in-depth look at technical and financial aspects of a project, including more precise analysis of installation and operating costs, possible business models, and project risks.
- Audit grade study: an exacting study of full cost and all future revenue streams. *Necessary to solicit financing*.

The Community Microgrids Roadmap: Financing

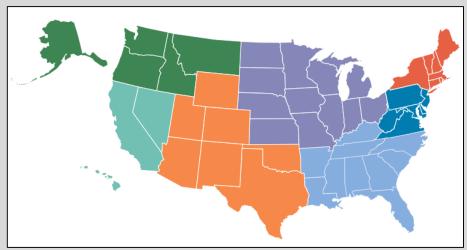
- Grants:
 - Each locality in the NY Rising Community Reconstruction Program is eligible for between \$3M and \$25 M of Community Development Block Grant – Disaster Recovery (CDBG-DR) funds for rebuilding a more resilient community.
 - Governor Cuomo's Community Grid NY Prize Commission will offer \$40M to develop several microgrids in 2014.
 - NYSERDA funding for qualifying CHP projects
- Debt
 - Tax exempt bonds available to public entities.
- Third Party Service Models

The Community Microgrids Roadmap: Ownership Models

- **Utility** companies can own the distribution infrastructure in a microgrid, and potentially its generation in the future;
- A **single energy user** can own its own microgrid, like Cornell and NYU campuses;
- Unrelated users that are contractually bound to each other can collectively own the microgrid's assets;
- A **single landowner** can own a microgrid and serve power to its tenants (and be assured of avoiding burdensome utility regulations that might otherwise apply to unrelated users);
- Or an independent provider can own the microgrid and provide power to one or several energy users, e.g. the Burrstone project in Utica, connecting a hospital, college and nursing home.

What does a microgrid cost?

Cost estimates **will vary greatly** depending on location, existing infrastructure, types of loads, and types of technologies installed, but some examples may give a general sense (\$3 Mil to \$9 Mil / MW?) :


- Hartford CT estimates a 600 kw generator will serve 350 kw school, 80 kw supermarket and 20 kw gas station for approximately \$2.9M, including all studies and distribution investment.
- Stamford CT estimates a 400 kw fuel cell and a 848 kw reciprocating engine (plus 450 kw emergency backup) can be purchased to provide power for an 800 kw government center for approximately **\$7.2M** total. Only 200 feet of distribution.
- Bridgeport CT proposes \$6M to provide power to a 183 kw public facility complex, 359 kw truck barn, and 500 kw emergency communication center using three 600kw continuous microtrubines and underground transmission.
- Burrstone spent \$16.3M on a project that included four reciprocating engines for a 3.6MWe total, providing 80% of electric load to hospital, nursing home, university. Also produces 7,000 lbs/hr (100 psig steam) and 700 gpm (200°F) hot water. Paid for by energy users through a 15-year power purchase agreement.
- Cornell's 37.9 MW, 860,000 lbs/hr (100 psig steam) system cost \$135-138M, although it projects savings from reduced electricity purchases alone of \$14M.

Resources: CHP Technical Assistance Partnerships

Key Activities:

- Market Opportunity Analysis. Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors.
- Education and Outreach. Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, end users, trade associations, and others.
- Technical Assistance. Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the development process from initial CHP screening to installation.

http://eere.energy.gov/manufacturing/distribut edenergy/chptaps.html

Thank You

Thomas Bourgeois (914) 422-4013 TBourgeois@law.pace.edu

